МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Методы исследования твердых тел

(наименование дисциплины)

Основной профессиональной образовательной программы академического бакалавриата

(академического (ой)/прикладного (ой) бакалавриата/магистратуры)

03.03.02 «Физика»

(код и наименование направления подготовки/специальности)

(наименование профиля подготовки (при наличии))

Квалификация выпускника

бакалавр

Форма обучения

очная

(очная, заочная)

МАГАС, 2018 г.

Рабочая программа одобрена учебно-методическим советом физико м	математического
ракультета	
Протокол заседания № <u>4</u> от « <u>4</u> » <u><i>MQS</i></u> 2018 г.	
Председатель учебно-методического совета	
Many Transcreb U. A.	/
(подпись)	(Ф. И. О.)
Программа рассмотрена на заседании Учебно-методического совета у	университета
Программа рассмотрена на заседании Учебно-методического совета у протокол № g от « 23 » g 20 g г.	университета
	университета
	университета
протокол № <u>9</u> от « <u>23</u> » <u>lull</u> 20 <u>18</u> г.	университета

Цели и задачи дисциплины.

Физика полимеров, физическая кинетика и композиционные материалы и методы исследования и модификации полимерных материалов в частности, интересует связь между строением и свойствами вещества. Любые твердые тела, в том числе и полимеры, представляют собой системы, в которых можно выделить ряд важнейших подсистем (решетка, молекулы, атомные ядра, система электронов, система спинов и др.) Хотя указанные подсистемы связаны между собой, воздействия на твердые тела различных силовых полей (механических, электрических и магнитных) вызывают раздельное проявление их особенностей.

Настоящий курс - это введение в физику конденсированного состояния полимеров. Для этого предполагается ознакомление студентов со строением структурной и свойствами макромолекул. Будут изучены различные физические состояния полимеров. Обладая своим сверхсостоянием, которое называется высокоэластическим, полимеры в физике твердого тела попадают в такой класс, у которых наблюдаются сверхсостояния (сверхпроводимость, сверхэластичность, сегнетоэлектрическое состояние). Это объясняется не только структурой полимерных молекул, но и свойствами внутреннего вращения, известными для простых молекул в молекулярной физике.

В курсе будут рассмотрены: термодинамика и статистическая физика полимеров и ориентированные состояния полимеров; особенности взаимосвязи строения структуры и физических свойств полимеров.

Изучение физики полимеров в курсе сопровождается приведением демонстрационного эксперимента, выполнением лабораторных работ, разработкой и созданием экспериментальных научно- исследовательских установок.

Место дисциплины в структуре основной образовательной программы

Дисциплина относится к дисциплинам по выбору вариативной части (Б.1.В.ДВ.9.1).

Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование и развитие следующих компетенций:

способностью использовать в профессиональной деятельности базовые естественнонаучные знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук (прежде всего химии, биологии, экологии, наук о земле и человеке) (ОПК-1);

способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач (ОПК-3);

научно-исследовательская деятельность:

способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-1);

способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта (ПК-2);

научно-инновационная деятельность:

готовностью применять на практике профессиональные знания теории и методов физических исследований (ПК-3);

способностью применять на практике профессиональные знания и умения, полученные при освоении профильных физических дисциплин (ПК-4);

организационно-управленческая деятельность:

способностью понимать и использовать на практике теоретические основы организации и планирования физических исследований (ПК-6);

Программой учебной дисциплины предусмотрены следующие виды учебной работы:

Вид учебной работы	Всего часов
Аудиторные занятия (всего)	76
В том числе:	
Лекции	36
Практические занятия, Семинары	38
Лабораторные работы	
КСР	2
Самостоятельная работа студента (всего)	68
Вид промежуточной аттестации (зачет)	

Общая трудоемкость освоения учебной дисциплины составляет:

4 зачетных единиц, 144 часов.

Основная литература.

- 1. Поликонденсационные реакции и полимеры, Микитаев А. К. Нальчик.: 2007
- 2. Электрические свойства полимеров Э. Р. Блайт, Д. Блур, М.: ФИЗМАТЛИТ 2008
- 3. Структура полимеров от молекул до наноансамблей, Интеллект, Долгопрудный 2009
- 4. Полимеры и биополимеры с точки зрения физики. А. Ю. Гросберг, А. Р. Хохлов «Интеллект» 2010

5. Практикум по химии и физике полимеров. Н. И. Авакумова, Л. А. Бударина, С. М. Дивгун М.: Химия, 1990.

Дополнительная литература.

- 1. Неравновесная термодинамика и физическая кинетика. И. П. Базаров, Э. В. Геворян, П. Н. Николаев. М.: Изд-во МГУ. 1989.
- 2. Статистическая механика Керзон Хауанг, перевод с английского Н. М. Плакиды и В. Т. Хозяинова. Изд во «МИР» 1966.
- 3. Статистическая физика в полимерах Г. Шиллинг, перевод с немецкого А. Ф. Дите, М. С. Кагана. Изд во «МИР» 1976.
- 4. Физическая кинетика Е. М. Лифшиц, Л. П. Питаевский изд- во «Наука» М.: 1979.
- 5. Термодинамика, статистическая физика и физическая кинетика. Ю.Б. Румер, М. Ш. Рывкин изд во «Наука М.: 1977.
- 6. Теория равновесных систем И. А. Квасников изд во «Едиториал УРСС» М.: 2002
- 7. Теория равновесных систем И. А. Квасников изд во «Едиториал УРСС» М.: 2002
- 8. Физические методы модификации полимерных материалов. В. Н. Кестельман М.: Химия, 1980.
- 9. Полимерные композиционные материалы прочность и технология. С. Л. Баженов, А. А. Берлин, А. А. Кульков, В. Г. Ошмян – Долгопрудный: ИД «Интеллект», 2010

Электронные ресурсы

- 1. http://www.newlibrary.ru/author/averko-antonovich_i_yu_bikmullin_r_t_.html
- 2. http://elibrary.ru/item.asp?id=15211462
- 3.<u>http://elibrary.ru/item.asp?id=17682128</u>