МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНГУШСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра химии

УТВЕРЖДАЮ
И.о. проректора по научной работе
/ Губарев А.Ю.
«15» декабря 2023 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

Специальность: 1.4.2. Аналитическая химия

Программа вступительного экзамена разработана в соответствии с Федеральными государственными требованиями к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре, условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов, утвержденными приказом Министерства науки и высшего образования Российской Федерации от 20 октября 2021 г. № 951.

Разработчик программы	/			Арчакова Р.Д.			
Программа обсуждена и 2023 г., протокол № 3.	утверждена	на	заседании	кафедры	химии	«20»	ноября
Заведующий кафедрой химии			/	(Саламов	A.X.	

Содержание

1. Требования к уровню подготовки поступающего в аспирантуру	4
2. Содержание вступительного экзамена	4
3. Критерии оценивания экзаменационного ответа	12
4. Список рекомендуемой литературы	13
4.1. Основная литература	13
4.2. Дополнительная литература	13
4.3. Интернет-ресурсы	14

Контроль качества знаний по аналитической химии при приеме вступительного экзамена в аспирантуру предполагает формулирование требований к поступающим. В основе программы вступительного экзамена лежит типовая программа курса аналитическая химия для студентов университета.

1. Требования к уровню подготовки поступающего в аспирантуру

Сдающий вступительный экзамен по аналитической химии должен:

- **иметь представление** о роли аналитической химии в системе наук, об основных аналитических центрах и сообществах;
- **знать** типы реакций и процессов в аналитической химии; основные методы анализа (выделения, разделения и концентрирования, гравиметрические, титриметрические, электрохимические, спектроскопические); специфику анализа основных объектов техногенного и природного происхождения;
- **уметь** выбрать необходимую совокупность методов анализа и методик проведения аналитических измерений; владеть практическими навыками выполнения анализа простейших объектов, проводить обработку и оценку полученных аналитических данных;
- **устанавливать связь** с предшествующими дисциплинами (общие математические и естественнонаучные дисциплины).

2. Содержание вступительного экзамена

Раздел 1. Основные разделы аналитической химии

Раздел 1.1. Введение

Предмет аналитической химии. Структура аналитической химии. Методологические аспекты аналитической химии: индивидуальность аналитической химии, ее место в системе наук, связь с практикой. Значение аналитической химии в развитии естествознания, техники и народного хозяйства. Основные аналитические проблемы: снижение предела обнаружения, повышение точности, обеспечение экспрессности, анализ микрообъектов, анализ без разрушения, локальный анализ, дистанционный анализ. Виды анализа: изотопный, элементный, функциональный, структурный, молекулярный, фазовый. Химические, физико-химические, физические и биологические методы анализа. Макро-, микро - и ультрамикроанализ.

Основные этапы развития аналитической химии. Современное состояние и тенденции развития аналитической химии: инструментализация, автоматизация, математизация, увеличение доли физических методов, переход к многокомпонентному анализу. Научная химико-аналитическая литература.

Химические методы анализа. Требования к реакциям, использующимся для обнаружения и разделения компонентов. Групповые реагенты и систематический анализ, специфические реагенты и дробный анализ. Наиболее употребляемые в химических методах анализа классификации катионов. Бессероводородный анализ.

Раздел 1.2. Химические равновесия и их описание при решении аналитических задач

Молекулярно-кинетическая теория и концентрационные константы равновесия. Использование молекулярно-кинетической теории при описании равновесия в системах:

раствор сильного электролита, раствор слабого электролита (одно- и многоосновного), раствор гидролизующихся солей. Факторы, влияющие на равновесие в химической системе (термодинамический и концентрационный). Описание равновесия в системе: слабый электролит-сильный электролит с одноименным ионом. Буферные системы и механизм их действия. Буферная емкость. Термодинамическая концепция описания химического равновесия. Представления Дебая-Хюккеля. Активность, коэффициент активности, их связь с ионной силой раствора. Термодинамическая константа равновесия, ее связь с концентрационной константой. Общие подходы к описанию равновесия в системе, характеризующейся одновременным протеканием нескольких конкурирующих процессов. Условная (кажущаяся) константа равновесия и ее связь с концентрационной и термодинамической константами.

Раздел 1.3. Скорость химической реакции и ее значение для анализа

Классификация химических процессов по скорости их протекания. Факторы, влияющие на скорость химического процесса (термодинамические, концентрационные). Катализ и его значение в анализе. Индуцированные и сопряженные реакции. Примеры ускорения и замедления реакций и процессов, используемых в химическом анализе. Управление реакциями и процессами в аналитической химии.

Раздел 1.4. Равновесие в системе осадок-раствор и его использование в анализе

Произведение растворимости и произведение активности как частные случаи констант равновесия (концентрационной и термодинамической). Растворимость как основная аналитическая характеристика. Факторы, влияющие на растворимость осадков: раствора, присутствие избытка сила, рH иона-осадителя, лигандакомплексообразователя. температура. Количественное осаждение. возможность раздельного осаждения при использовании общего осадителя. Загрязнение осадков в процессе их формирования. Адсорбция на поверхности осадка и закономерности ее протекания. Окклюзия и изоморфизм. Их предотвращение. Соосаждение. Положительное и отрицательное значения явления соосаждения в анализе. Общие рекомендации при получении кристаллических и аморфных осадков. Гомогенное осаждение и преимущества его использования. Особенности образования коллоидных систем. Использование коллоидных систем в химическом анализе.

Раздел 1.5. Равновесия в растворах комплексных соединений

Использование комплексных соединений для обнаружения и разделения компонентов анализируемой смеси. Устойчивость комплексного соединения как его основная характеристика. Константа устойчивости и нестойкости как частный случай константы равновесия. Факторы, влияющие на равновесие в растворах комплексных соединений (рН, избыток лиганда-комплексообразователя, ионов-осадителей, ионная сила). Типы комплексных соединений, использующихся в анализе. Классификация комплексных соединений по характеру взаимодействия металл-лиганд, по однородности лиганда и центрального иона (комплексообразователя): внутрисферные комплексы и ионные ассоциаты (внешнесферные комплексы и ионные пары), однороднолигандные и смешанолигандные, полиядерные (гетерополиядерные И гомополиядерные). Органические соединения как лиганды, их преимущества перед неорганическими лигандами. Важнейшие органические реагенты, применяемые в анализе для разделения ионов металлов, для маскирования и демаскирования. Органические реагенты для органического анализа. Возможности использования комплексных соединений и органических реагентов в различных методах анализа.

Раздел 1.6. Окислительно-восстановительные реакции и их использование в анализе

Обратимые и необратимые реакции. Стандартный и формальный окислительновосстановительные (ОВ) потенциалы. Связь константы равновесия ОВ-реакции со стандартными ОВ-потенциалами систем. Факторы, влияющие на направление ОВ-реакции (температура, концентрация реагирующих компонентов, рН раствора, присутствие в растворе лигандов-комплексообразователей или ионов-осадителей, ионная сила и т.п.). Оценка возможности последовательного определения нескольких окислителей или восстановителей в смеси. Использование ОВ-реакций при подготовке пробы к анализу. Понятие о смешанных потенциалах. Основные неорганические и органические окислители и восстановители, применяемые в анализе. Методы предварительного окисления и восстановления определяемого элемента.

Раздел 1.7. Теория и практика пробоотбора и пробоподготовки

Представительность пробы, проба и объект анализа, проба и метод анализа. Отбор проб гомогенного и гетерогенного состава. Способы получения средней пробы твердых, жидких и газообразных веществ. Устройства и приемы, используемые при этом. Первичная обработка и хранение проб, дозирующие устройства.

Основные способы перевода пробы в форму, необходимую для данного вида анализа: растворение в различных средах, спекание, сплавление, разложение под давлением, разложение при помощи высокочастотного разряда и в плазме, комбинирование различных приемов. Особенности разложения органических соединений, способы устранения и учета загрязнений и потерь компонентов при пробоподготовке.

Раздел 2. Химические методы анализа.

Раздел 2.1. Гравиметрический метод анализа

Сущность гравиметрического анализа, преимущества и недостатки метода. Прямые и косвенные методы определения.

Важнейшие неорганические и органические осадители. Общая схема определений. Требования к осаждаемой и гравиметрической формам. Изменение состава осадка при высушивании и прокаливании. Погрешности в гравиметрическом анализе. Термогравиметрический анализ.

Примеры практического применения метода.

Раздел 2.2. Титриметрические методы анализа

Методы титриметрического анализа. Классификация. Требования, предъявляемые к реакциям в титриметрическом анализе. Виды титриметрических определений: прямое и обратное, косвенное титрование. Способы выражения концентраций растворов в титриметрии. Эквивалент. Молярная масса эквивалента. Молярная концентрация. Первичные стандарты, требования к ним. Фиксаналы. Вторичные стандарты, Виды кривых титрования (s-образные, линейные). Точка эквивалентности и конечная точка титрования.

Кислотно-основное титрование. Построение кривых титрования. Влияние величины константы кислотности или основности, концентрации кислот или оснований,

температуры на характер кривых титрования. Кислотно-основное титрование в неводных средах.

Кислотно-основные индикаторы. Погрешности титрования при определении сильных и слабых кислот и оснований, многоосновных кислот и оснований.

Окислительно-восстановительное титрование. Построение кривых титрования. Факторы, влияющие на характер кривых титрования: комплексообразование, концентрация ионов водорода, ионная сила. Способы определения конечной точки титрования; индикаторы. Погрешности титрования.

Методы окислительно-восстановительного титрования. Перманганатометрия. Иодометрия и иодиметрия. Система иод-иодид как окислитель или восстановитель. Дихроматометрия. Первичные и вторичные стандарты. Индикаторы.

Осадительное титрование. Построение кривых титрования. Способы обнаружения конечной точки титрования; индикаторы. Погрешности титрования. Примеры практического применения.

Комплексометрическое титрование. Неорганические и органические титранты в комплексометрии. Использование аминополикарбоновых кислот в комплексонометрии. Способы комплексонометрического титрования: прямое, обратное, косвенное.

Построение кривых титрования. Металлохромные индикаторы и требования, предъявляемые к ним. Важнейшие универсальные и специфические металлохромные индикаторы. Селективность титрования и способы ее повышения. Погрешности титрования.

Примеры практического применения комплексонометрического титрования.

Раздел 2.3. Электрохимические методы анализа

Общая характеристика электрохимических методов. Классификация. Электрохимические ячейки. Индикаторный электрод и электрод сравнения. Равновесные и неравновесные электрохимические системы. Явления, возникающие при протекании тока (омическое падение напряжения, концентрационная и кинетическая поляризация). Поляризационные кривые и их использование в различных электрохимических методах.

<u>Раздел 2.4. Потенциометрия. Прямая потенциометрия и потенциометрическое</u> титрование

Обратимые И необратимые Измерение потенциала. окислительновосстановительные системы. Индикаторные электроды. Ионометрия. Классификация ионоселективных электродов: электроды c гомогенными гетерогенными кристаллическими мембранами, стеклянные электроды, электроды с подвижными носителями, ферментные и газочувствительные электроды. Электронная функция, коэффициент селективности, время отклика.

Примеры практического применения ионометрии. Определение рН, ионов щелочных металлов, галогенид-ионов.

Потенциометрическое титрование. Изменение электродного потенциала в процессе титрования. Способы обнаружения конечной точки титрования. Использование реакций кислотно-основных, осаждения, комплексообразования, окислениявосстановления.

Примеры практического применения.

Раздел 2.5. Кулонометрия

Теоретические основы. Закон Фарадея. Способы определения количества электричества. Прямая кулонометрия и кулонометрическое титрование. Внешняя и внутренняя генерация кулонометрического титранта. Определение эффективности тока генерации. Титрование электроактивных и электронеактивных компонентов. Определение конечной точки титрования. Преимущества и ограничения метода кулонометрического титрования по сравнению с другими титриметрическими методами.

Примеры практического применения.

Раздел 2.6. Вольтамперометрия

Индикаторные электроды и классификация вольтамперометрических методов. Преимущества и недостатки ртутного электрода. Применение твердых электродов.

Полярография. Получение И характеристика вольтамперной кривой. Конденсаторный (емкостный), миграционный, диффузионный токи. Предельный диффузионный ток. Уравнение Ильковича. Уравнение полярографической волны Ильковича-Гейровского. Потенциал полуволны. Факторы, влияющие на величину потенциала полуволны. Зависимость потенциала полуволны от константы устойчивости комплексного соединения. Восстановление и окисление органических соединений. Качественный количественный полярографический анализ. Современные вольтамперометрии: прямая И инверсионная, переменнотоковая, разновидности хроноамперометрия С линейной разверткой (осциллография). Преимущества ограничения по сравнению с классической полярографией.

Амперометрическое титрование. Сущность метода. Индикаторные электроды. Выбор потенциала индикаторного электрода. Амперометрическое титрование с одним и двумя поляризованными электродами.

Виды кривых титрования. Использование реакций осаждения, комплексообразования, окисления-восстановления.

Раздел 3. Физические методы.

Взаимодействие вещества с электромагнитным излучением, потоками частиц, магнитным полем –основа физических методов.

Раздел 3.1. Спектроскопические методы анализа

Спектр магнитного излучения. Энергия фотонов, частота, волновое число, длина волны; связь между ними; термины, символы, единицы измерения. Составляющие внутренней энергии частиц и соответствующие им диапазоны электромагнитного излучения. Основные типы взаимодействия вещества с излучением: эмиссия (тепловая, люминесценция), поглощение, рассеяние. Классификация спектроскопических методов по природе частиц, взаимодействующих с излучением (атомные, молекулярные); характеру процесса (абсорбционные, эмиссионные); диапазону электромагнитного излучения.

Основные законы испускания и поглощения электромагнитного излучения. Связь аналитического сигнала с концентрацией определяемого компонента.

Раздел 3.2. Методы атомной оптической спектроскопии

Атомные спектры испускания, поглощения и флуоресценции. Резонансное поглощение. Самопоглощение, ионизация. Аналитические линии, их зависимость от природы и концентрации определяемого компонента.

Аттомно-эмиссионный метод. Принципиальная схема атомно-эмиссионного спектрометра. Источники атомизации и возбуждения (атомизаторы): электрические разряды (дуговые, искровые, пониженного давления), , плазменные источники (плазмотроны, индуктивно-связанная плазма), лазеры. Их основные характеристики: температура, состав атмосферы атомизатора, концентрация электронов.

Физические и химические процессы в атомизаторах. Спектральные и физикохимические помехи, способы их устранения. Особенности подготовки пробы и ее введения в атомизаторы различного типа. Качественный и количественный анализ атомно-эмиссионным методом. Метрологические характеристики и аналитические возможности.

Аттомно-абсорбционный метод. Принципиальная схема атомно-абсорбционного спектрометра. Анализаторы (пламенные и непламенные). Источники излучения (лампы с полым катодом, источники сплошного спектра, лазеры), их характеристики.

Спектральные и физико-химические помехи, способы их устранения. Возможности, достоинства и недостатки метода, его сравнение с атомно-эмиссионным методом. Метрологические характеристики.

Аттомно-флуоресцентная спектроскопия. Основы метода. Источники возбуждения. Выбор условий анализа. Взаимное влияние элементов и устранение этих влияний. Количественный анализ. Применение.

Примеры практического применения атомно-эмиссионного, атомно-флуоресцентного и атомно-абсорбционного методов.

Раздел 3.3. Методы молекулярной оптической спектроскопии

Молекулярная абсорбционная спектроскопия (спектрофотометрия). Принципиальная схема прибора. Классификация аппаратуры с точки зрения способа монохроматизации (фотометры, спектрофотометры). Основные причины отклонения от основного закона светопоглощения (инструментальные и физико-химические).

Связь химической структуры соединения с абсорбционным спектром. Способы получения соединений. Фотометрические аналитические реагенты, окрашенных требования К ним. Измерение высоких, низких оптических плотностей (дифференциальный метод). Анализ многокомпонентных систем. Спектрофотометрия как метод исследования реакций в растворах (комплексообразования, протолитических), сопровождающихся изменением спектров поглощения. Метрологические характеристики и аналитические возможности. Примеры практического применения.

Флуориметрия. Люминесценция и молекулярная структура. Основные закономерности. Тушение люминесценции. Качественный и количественный анализ. Хемилюминесцентный метод.

Раздел 3.4. Ядерно-физические и радиохимические методы.

Активационный анализ. Нейтронно-активационный анализ. Основные виды взаимодействия нейтронов с атомными ядрами. Источники нейтронов. Нейтронно-активационный анализ на тепловых и быстрых нейтронах.

Радиохимические методы. Радиоактивные индикаторы и изотопное разбавление. Общая характеристика и применение.

Раздел 4. Методы разделения и концентрирования.

Место и значение методов разделения и концентрирования, тенденции развития. Принципы классификации, процессы и реакции, лежащие в основе методов. Принципы выбора метода.

Раздел 4.1. Методы, основанные на образовании. Новой фазы.

Осаждение и соосаждение. Основные типы неорганических и органических осадителей и соосадителей. Выбор условий проведения. Осаждение и соосаждение матрицы, микрокомпонента, с коллектором. Селективное растворение.

Испарение, сублимация и родственные методы. Классификация методов. Количественные характеристики.

Раздел 4.2. Методы, основанные на однократном равновесном распределении.

Экстракция. Закон распределения. Основные количественные характеристики. Классификация. Физическое распределение. Реакционная экстракция. Основные типы экстрагентов. Соэкстракция. Синергизм. Гомогенная экстракция. Экстракция расплавами. Газовая и флюидная экстракция.

Сорбция. Основы метода. Классификация и количественное описание сорбционных процессов. Сорбция на активных углях, силикагелях, оксидах металлов, синтетических ионитов, комплексообразующих сорбентах.

Раздел 4.3. Методы, основанные на многократном распределении. Хроматография.

Основные понятия, теория равновесной хроматографии. Граничные условия применимости. Размывание хроматографических пиков и их разрешение. Уравнение Ван-Дееметра. Способы осуществления хроматографического процесса, элюирования и детектирования.

Газовая хроматография.

Газо-адсорбционная хроматография. Изотермы адсорбции. Газы-носители и адсорбенты, требования к ним. Влияние температуры на удерживание и разделение. Детекторы. Применение.

Газо-жидкостная хроматография. Требования к носителям и неподвижным и неподвижным жидким фазам. Влияние природы жидкой фазы разделяемых веществ на эффективность разделения. Реакционная газовая хроматография.

Жидкостная хроматография.

Ионообменная хроматография. Неорганические и органические ионообменники и их свойства. Комплексообразующие ионообменники. Кинетика и селективность ионного обмена. Влияние природы и состава элюента на эффективность разделения веществ. Применение.

Жидкостно-адсорбционная хроматография. Требования к адсорбентам и подвижной фазе. Влияние природы и состав элюента на эффективность разделения. Высокоэффективная жидкостная хроматография. Детекторы. Применение для анализа сложных веществ.

Гель-хроматография (гель-проникающая и гель-фильтрация). Механизм разделения. Характеристика гелей. Применение.

Жидкость-жидкостная (распределительная) хроматография. Разновидности метода в зависимости от полярности неподвижной фазы. Выбор условий разделения. Применение.

Аффинная хроматография. Основы метода, основные адсорбенты. Условия проведения. Применение.

Раздел 4.4. Мембранные методы

Общие представления и характеристики. Диффузионные методы. Диализ. Испарение через мембрану. Газодиффузное разделение.

Раздел 4.5. Методы внутрифазного разделения

Электромиграционные методы. Зонное и противоточно-электомиграционное разделение, фронтальное разделение. Методы разделения в потоке. ППФ-методы.

Раздел 5. Метрологические основы химического анализа

Основные метрологические понятия и представления. Измерение. Методы и средства измерений, метрологические требования к результатам измерений, основные принципы и способы обеспечения достоверности результатов измерений, погрешности. Аналитический сигнал и помехи. Объем информации в аналитическом сигнале.

Основные стадии химического анализа. Выбор метода анализа и составление схем анализа. Абсолютные (безэталонные) и относительные методы анализа. Классификация погрешностей анализа. Систематические и случайные погрешности. Погрешности отдельных стадий химического анализа. Основные характеристики метода анализа: правильность и воспроизводимость, коэффициент чувствительности, предел обнаружения, нижняя и верхняя границы определяемых содержаний. Статистическая обработка результатов измерений. Закон нормального распределения случайных погрешностей, t- и F- распределения. Среднее, дисперсия, стандартное отклонение. Проверка гипотезы нормальности, гипотезы однородности результатов измерений. Сравнение дисперсии и средних двух методов анализа. Регрессионный анализ. Использование метода наименьших квадратов для построения градуировочных кривых. Способы оценки правильности: использование стандартных образцов, метод добавок, метод варьирования навесок, сопоставление с другими методами. Стандартные образцы. Их изготовление, аттестация и использование.

Требования к метрологической оценке в зависимости от объекта и цели анализа. Способы повышения воспроизводимости и правильности анализа. Организация и методология метрологического обеспечения деятельности аналитической службы. Поверка аппаратуры, аттестация нестандартных средств измерений. Метрологическая аттестация аналитических лабораторий.

Раздел 6. Анализ конкретных объектов

Неорганические соединения. Продукты неорганического производства, вещества высокой чистоты, полупроводниковых материалов; определение в них основного вещества, примесных и легирующих микрокомпонентов.

Органические вещества. Особенности анализа органических объектов. Типы аналитических задач в органическом анализе. Основные аналитические характеристики органических веществ. Идентификация органических веществ по простым физико-химическим константам.

Элементный анализ. Определение С, Н, О, серы и галогенов.

Функциональный анализ. Аналитическая форма, пути и способы перевода в нее определяемой функциональной группы. Типовые групповые реакции. Идентификация и определение структурных фрагментов.

Молекулярный анализ. Особенности разделения органических веществ.

Анализ органических объектов. Специфика аналитических проблем в производстве органических веществ и материалов. Определение следов органических веществ в различных объектах. Особенности определения металлов в органических объектах.

Объекты окружающей среды. Основные источники загрязнений и основные загрязнители. Требования по чистоте; ПДК и их связь с чувствительностью. Сравнительная характеристика методов анализа объектов окружающей среды. Тестыметолы.

3. Критерии оценивания экзаменационного ответа

Экзаменационная комиссия выставляет оценку по 100-балльной шкале.

От 91 до 100 баллов ставится при соблюдении следующих условий:

- показал отличные знания в области Аналитической химии;
- грамотно употребляет термины; полно, правильно и логично отвечает на вопросы билета и на дополнительные вопросы;
- умеет использовать полученные теоретические знания при решении практических вопросов и заданий; умеет эмоционально, последовательно, логично, доказательно излагать свои мысли.

От 81 до 90 баллов ставится при соблюдении следующих условий:

- показал хорошие знания в области Аналитическая химия;
- грамотно употребляет термины;
- раскрывает содержание вопросов билета, но делает это недостаточно подробно;
- умеет использовать полученные теоретические знания при решении практических вопросов и заданий;
- допускает некоторые неточности, однако может скорректировать свой ответ в соответствии с наводящими вопросами экзаменатора;
- умеет последовательно, логично излагать свои мысли.

От 71 до 80 баллов ставится за:

- показал удовлетворительные знания в области Аналитической химии;
- понимает общеисторические термины, но не всегда грамотно использует их в речи;
- фрагментарно раскрывает содержание вопросов билета;
- допускает значительные ошибки при ответе, однако способен их исправить с помощью наводящих вопросов экзаменатора;
- испытывает затруднения при иллюстрировании теоретических положений примерами из практики;
- не умеет последовательно, логично излагать свои мысли.

70 и менее баллов ставится за:

- показал неудовлетворительные знания в области Аналитической химии;
- не может ответить на вопросы билета или отвечает неверно, несвязно, нелогично;

- не понимает специальных терминов;
- не может привести примеры из практики;
- не может последовательно, логично излагать свои мысли.

4. Список рекомендуемой литературы

4.1. Основная литература

- 1. Александрова Э.А., Гайдукова Н.Г. Аналитическая химия. Химические методы анализа: Учебник и практикум. -М.: Юрайт, 2015.
- 2. Харитонов Ю.А. Аналитическая химия. В 2-хт. Т.1. Общие теоретические основы. Качественный анализ: Учебник для вузов/ Ю.Я.Харитонов. -М.: ГЕОТАР-МЕДИА, 2014. -688c.
- 3. Харитонов Ю.А. Аналитическая химия. В 2-хт. Т.2. Количественный анализ. Физико-химические (инструментальные) методы анализа: Учебник для вузов/ Ю.Я.Харитонов. -М.: ГЕОТАР-МЕДИА, 2014. -656с.
- 4. Золотов Ю.А. Введение в аналитическую химию. М.: Бином. Лаборатория знаний, 2016. 264c.
- 5. В.И.Васильева, И.В.Шкугина, С.И.Карпов, В.Ф.Селеменов, В.Н.Семенов. Спектральные методы анализа. Практическое руководство. М.: Лань, 2014. -416с.
- 6. Жебентяев А.И. Аналитическая химия. Хроматографические методы анализа. М.: НИЦ ИНФРА-М, Нов.знание, 2013, 206с.
- 7. Золотов Ю.А. История и методология аналитической химии. Золотов Ю.А. М.: Дрофа, 2008г.
- 8. Основы аналитической химии. Учебник для вузов. В 2-х кн. Кн.1. Общие вопросы. Методы разделения. Кн.2. Методы химического анализа. Под ред. Ю.А. Золотова. М.: Высшая школа. 2004.361 с., 503 с.
- 9. Васильев В.П. Аналитическая химия. В 2-книгах. М.: Дрофа, 2003г.
- 10. Васильев В.П. Аналитическая химия. В 2-х кн. -М: Дрофа. 2004. 368с., 384с.
- 11. Аналитическая химия. В 3-х кн / Под ред. Л.Н. Москвина. -М: Академия. 2008., 2010г. 576с., 302с.
- 12. Электроаналитические методы: теория и практика: пер. с англ. / Ред. Ф. Шольц. М.: Бином. Лаборатория знаний, 2006. 326с.: ил. (Методы в химии).
- 13. Эггинс Б. Химические и биологические сенсоры: Пер. с англ. / Б. Эггинс. М.: Техносфера, 2005. 336с.: ил. (Мир электроники).
- 14. Шмидт, Вернер. Оптическая спектроскопия для химиков и биологов: пер. с англ. / В. Шмидт. М.: Техносфера, 2007. 368 с.: ил., табл. (Мир физики и техники).
- 15. И.К.Цитович. Курс аналитической химии: учебник для вузов / И.К. Цитович. 9-е изд., стер. СПб.: Лань, 2007. 496 с. ил. (Учебники для вузов).
- 16. Ю.Я.Харитонов. Примеры и задачи по аналитической химии: (гравиметрия, экстракция, неводное титрование, физико-химические методы анализа): учеб. пособие для вузов / Ю.Я. Харитонов, В.Ю. Григорьева. М.: ГЭОТАР-Медиа, 2008. 304 с.: табл.

4.2. Дополнительная литература

1. Харитонов Ю.А., Джабаров Д.Н., Григорьева В.Ю. Аналитическая химия. Количественный

- анализ. Физико-химические (инструментальные) методы анализа/ Практикум. -М.: ГЕОТАР-МЕДИА, 2012
- 2. Харитонов Ю.А., Григорьева В.Ю. Примеры и задачи по аналитической химии -М.: ГЕОТАР-МЕДИА, 2009.
- 3. Валова (Копылова) В. Аналитическая химия и физико-химические методы анализа: практикум. М.: Дашков и К., 2013. -200с.
- 4. Отто М. Современные методы аналитической химии. М.: Дрофа, 2003-2004г.
- 5. Физические методы исследования неорганических веществ: учеб. пособие для вузов / Под ред. А.Б. Никольского. - М.: Академия, 2006. - 448с: ил. - (Высшее профессиональное образование). (Допущ. УМО)
- 6. Токсикологическая химия: учебник для вузов / Под ред. Т.В. Плетеневой. 2-е изд., испр. М.: ГЭОТАР-Медиа, 2006. 509 с.: ил. (Реком. УМО)
- 7. Марченко, Зигмунт. Методы спектрофотометрии в УФ и видимой областях в неорганическом анализе: пер. с польск. / 3. Марченко, М. Бальцежак. М.: Бином. Лаборатория знаний, 2007. 712 с: ил. (Методы в химии).
- 8. Лурье, Юлий Юльевич. Справочник по аналитической химии / Ю.Ю. Лурье. 6-е изд., [перепеч. с изд. 1989 г.]. М.: Альянс, 2007. 447 с.: табл., схемы.
- 9. Другов, Юрий Степанович. Пробоподготовка в экологическом анализе: практическое руководство / Ю.С. Другов, А.А. Родин. 3-е изд., доп. и перераб. М: Бином. Лаборатория знаний, 2009. 855 с.: ил. (Методы в химии).
- 10. Другов, Юрий Степанович. Анализ загрязненных биосфер и пищевых продуктов: практическое руководство / Ю.С. Другов, А.А. Родин. М.: Бином. Лаборатория знаний, 2007. 295 с.: ил. (Методы в химии).
- 11. Другов, Юрий Степанович. Анализ загрязненной почвы и опасных отходов: практическое руководство / Ю.С. Другов, А.А. Родин. М.: Бином. Лаборатория знаний, 2007. 424 с.: ил. (Методы в химии).

4.3. Интернет-ресурсы

- 1. https://lib.inggu.ru/ Научная библиотека ИнгГУ
- 2. http://window.edu.ru Электронная библиотека онлайн «Единое окно к образовательным ресурсам»
- 3. http://school-collection.edu.ru «Образовательный ресурс России»
- 4. http://www.edu.ru Федеральный образовательный портал: учреждения, программы, стандарты, ВУЗы, тесты ЕГЭ, ГИА
- 5. http://fcior.edu.ru Федеральный центр информационно-образовательных ресурсов (ФЦИОР)
- 6. http://polpred.com/news ЭБС "КОНСУЛЬТАНТ СТУДЕНТА". Электронная библиотека технического вуза
- 7. http://www.studentlibrary.ru Издательство «Лань». Электронно-библиотечная система
- 8. http://rvb.ru Русская виртуальная библиотека
- 9. http://ruslit.ioso.ru Кабинет русского языка и литературы
- 10. http://ruscorpora.ru Национальный корпус русского языка
- 11. http://e.lanbook.com Издательство «Лань». Электронно-библиотечная система
- 12. http://old.rsue.ru/Academy/Archives/Index.htm Еженедельник науки и образования Юга России «Академия»

- 13. http://elibrary.ru/defaultx.asp Научная электронная библиотека «e-Library»
- 14. http://www.iprbookshop.ru Электронно-библиотечная система IPRbooks
- 15. http://www.informio.ru Электронно-справочная система документов в сфере образования «Информио»
- 16. Сетевая версия, доступна со всех компьютеров в корпоративной сети ИнгГУ Информационно-правовая система «Консультант-плюс»
- 17. Сетевая версия, доступна со всех компьютеров в корпоративной сети ИнгГУ Информационно-правовая система «Гарант»
- 18. https://www.biblio-online.ru Электронно-библиотечная система «Юрайт»